KOLHAN UNIVERSITY, CHAIBASA JHARKHAND

Syllabus for FYUGP (Mathematics Major & Minor)

As per

Revised Curriculum and Credit Frame work of NEP- 2020

To be effective from academic session 2022-26

University Department of Mathematics Kolhan University, Chaibasa West Singhbhum, Jharkhand-833202

UNIVERSITY DEPARTMENT OF MATHEMATICS KOLHAN UNIVERSITY, CHAIBASA

Four-Year under Graduate Programme (FYUGP)

As per Provisions of NEP-2020 to be implemented from Academic Year 2022-23

COMPOSITION OF BOARD OF STUDIES

- Dr. Bijay Kumar Sinha
 Head, University Department of Mathematics,
 Kolhan University Chaibasa
- 2. Dr. Md. Moiz Ashraf
 Head, P.G. Department of Mathematics
 Karim City, College, Jamshedpur
- 3. Dr. P. C. Banerjee
 Assistant Professor,
 P.G. Department of Mathematics
 Karim City, College, Jamshedpur
- 4. **Mr. Mahendra Kumar Rana**Assistant Professor,
 University Department of Mathematics,
 Kolhan University Chaibasa

FBey's

Dr.Bijay Kumar Sinha
(Chairman & Head)
University Department of Mathematics,
Kolhan University, Chaibasa.

Index

Comoster	Paper	Code	Course Title	Credit
Semester		MJ-1	Calculus	4
		MJ-2	Matrices	4
11	Major-03	MJ-3	Analytical Geometry & Trigonometry	4
	Major-04	MJ-4	Real Analysis	4
		MJ-5	Vector	4
III	Major-06	MJ-6	Real Analysis & Set theory	4
IV	Major-07	MJ-7	Ordinary Differential Equation	4
	Major-08	MJ-8	Group Theory	4
		MJ-9	Mechanics	4
V	Major-10	MJ-10	Theory of Equation & Higher Arithmetic	4
	Major-04 Major-05 Major-06 Major-07 Major-08 Major-09 Major-10 Major-11 Major-12 Major-13 Major-14 Major-15 Major-16 Major-17 Major-18 Major-19 Major-20 Advance Major-01 Advance Major-02	MJ-11	Complex Analysis	4
		MJ-12	Dynamics & Statics	4
VI		MJ-13	LPP & Statistics	4
		MJ-14	Analysis II & Ring	4
VI		MJ-15	Numerical Analysis & Programming in C	4
	Major-16	MJ-16	Fluid Mechanics & Special Function	4
VII	Major-17	MJ-17	Metric space & Discrete Mathematics	4
	Major-18	MJ-18	Integral Transform	4
		MJ-19	Partial Differentiation	4
		MJ-20	Linear Algebra & Linear Difference equation	4
	Advance Major-01	AMJ-1	Topology	4
VIII			Complex Analysis II	4
	Advance Major-03		Real Analysis & Measure Theory	4

		Y	
Program: Certificate	Year: First	Semester: I	
Class: UG			
Subject: Mathematics			
Course Code: MJ-1	Course Title: Calculus		

Course Learning Outcomes: This course will enable the students to:

- a) Apply the rules of differentiation, including the chain rule, to compute derivatives of functions. Also, able to apply different mean value theorems, such as Rolle's theorem and Lagrange's mean value theorem, to establish results about the behavior of differentiable functions.
- b) Approximate functions using Maclaurin's and Taylor's series, analyze the error of these approximations using Taylor's theorem with Lagrange, Cauchy, and Roche-Schlomilch forms of remainder, and use these results to find extrema of functions.
- c) Define and compute the curvature of a curve at a given point, and understand its geometric significance and identify the different types of asymptotes of general algebraic curves, including parallel asymptotes, asymptotes parallel to axes, and slant asymptotes.
- d) Trace Cartesian, polar, and parametric curves and identify their key features, as well as use calculus techniques to analyze the behavior of curves and solve real-world problems that involve curve tracing.
- e) Derive and apply reduction formulae, parameterize curves, and compute arc length, area of bounded curves, volume, and surface area of surfaces of revolution.

	(Theory)	Compulsory Time: 3 Hours	
Full Marks: 75		Content	Hours
Unit_	Differential calculus: Differentiability of a real valued function, Geometrical interpretation of differentiability, Rules of differentiation, Chain rule of differentiation; Darboux's theorem, Rolle's theorem,		15 h
II	Expansions expansion of form with La	of Functions: Maclaurin's and Taylor's theorems for a function in an infinite series, Taylor's theorem in finite agrange, Cauchy and Roche–Schlomilch forms of remainder,	12 h
III	algebraic c Symmetry,	and Asymptotes: Curvature; Asymptotes of general urves, Parallel asymptotes, Asymptotes parallel to axes; Concavity and convexity, Points of inflection, Tangents at tiple points, Position and nature of double points.	13 h
IV	Curve Tra	ncing: Tracing of Cartesian, polar and parametric curves,	10 h
V	Integral C reduction ∫ sin ⁿ xco parameter	alculus: Reduction formulae, derivations and illustrations of formulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \tan^n x dx$, $\sin^n x dx$ and $\int \cos^m x \cdot \cos^n x dx$, parametric equations, izing a curve, arc length, arc length of parametric curves, Area decurve, you me and area of surface of revolution.	10 h
	Ses	ssional Internal Assessment (SIA) Full Marks – 25 Marks A – Internal written Examination – 20 Marks (1 Hr) B – Over All Performance including Regularity – 05 Marks	

- 1. R. K. Dwivedi, Calculus, 1st Edition, Pragati Prakashan, Meerut, India (2019).
- 2. Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India.

Semester: II
enable the students to:

Course Learning Outcomes: This course will enable the students to:

- a) Understand and apply fundamental concepts in number theory, including well ordering property, division algorithm, congruence relations, mathematical Induction, and the fundamental theorem of arithmetic.
- b) Gain a thorough understanding of matrices, including types of matrices, determinants, operations, invertibility, matrix rank, normal forms, and the rank-nullity theorem
- c) Gain a strong grasp of systems of linear equations, including their matrix form, augmented matrices, consistency (both necessary and sufficient conditions), and methods for solving homogeneous and non-homogeneous linear equations.
- d) Find eigenvalues and corresponding eigenvectors for a square matrix.

Credit:	4 (Theory)	Compulsory	
Full Ma	arks: 75	Time: 3 Hours	Hours
Unit Content I Theory of numbers: Well-ordering property (WOP) of positive integers, Division algorithm, Divisibility and Euclidean algorithm, Congruence relation between integers, Principles of Mathematical Induction, Fundamental Theorem of Arithmetic.		15 h	
II	Matrices: Ma submatrix, bl of a matrix,	atrices and types of matrices, determinants, operations on matrices, lock Matrix, Invertible Matrices, Uniqueness of Inverse Matrix, Rank Normal form PAQ, Canonical or Echelon form, Rank-Nullity Theorem	15 h
III	System of linear equations: Matrix form of system of linear equations,		15 h
IV	Eigen values	s and Eigen vectors of matrices: Characteristic polynomial of a matrix, as and Eigen vectors, A.M. and G.M. of Eigen values, Theorems on the control of the	15 h
	Se	essional Internal Assessment (SIA) Full Marks – 25 Marks A – Internal written Examination – 20 Marks (1 Hr) B – Over All Performance including Regularity – 05 Marks	

- 1. David M. Burton (2007). Elementary Number Theory (7th edition). McGraw-Hill
- 2. Vasishtha A. R., Vasishtha A. K. (2011). Matrices. Krishna's Prakashan Media (P) Ltd
- 3. Bernard Kolman & David R. Hill (2003). Introductory Linear Algebra with Applications (7th edition). Pearson Education Pvt. Ltd. India.
- 4. David C. Lay, Steven R. Lay & Judi J. McDonald (2016). Linear Algebra and its Applications (5th edition), Pearson Education Pvt. Ltd. India.
- 5. Pankaj Kumar Manjhi (2018). Algebra. (1st edition) Pragati Prakashan, Meerut

Program: Certificate	Year: First	Semester: II
Class: UG Subject: Mathematics		Company and Trigonometry
Course Code: M.I-3	Course Title: Anal tic	Geometry and Trigonometry

Course Learning Outcomes: This course will enable the students to:

- a) Develop skills in two-dimensional analytical geometry, including transformations of rectangular axes, reduction of general equations to normal form, analysis of conic systems, and understanding the polar equation of conics.
- b) Gain proficiency in three-dimensional analytical geometry, including the concepts of direction cosines, straight lines, plans, spheres, intersecting spheres, spheres passing through a given circle, cones, and cylinders.
- c) Gain the ability to analyze and classif onicoids, understand their plane sections, determine generating lines, reduce equations to normal form, and classify quadrics.
- d) Develop concepts in trigonometry, including the polar form of complex numbers, DeMoivre's theorem, and its applications in trigonor retric function expansions.
- e) Develop proficiency in working with perbolic and exponential functions, understanding their properties and applications.

Credit:	4 (Theory)	Compulsory		
Full Marks: 75 Time: 3 Hours			Hours	
Unit	Content			
1	axes, Gene	reometry of two dimensions: Transformation of rectangular ral equation of second degree and its reduction to normal ms of conies, Polar equation of a conic.	15 h	
П	Analytical grant Plane, Sphe	Analytical geometry of three dimensions: Direction cosines, Straight line, Plane, Sphere, Two Intersecting Spheres, Spheres Through a Given Circle 15 h		
111	Conicoid: Central conicoids, paraboloids, plane sections of conicoids,		15 h	
IV	Trigonome De-Moivre expansions	try: Polar form of complex number, nth roots of unity, s Theorem, Applications of De-Moivre's Theorem in trigonometric function, Hyperbolic function, Exponential and their properties.	15 h	
	Se	assional Internal Assessment (SIA) Full Marks – 25 Marks A – Internal written Examination – 20 Marks (1 Hr) B – Over All Performance including Regularity – 05 Marks		

- 1. Loney, S. L., Elements of Coordinate Geometry.
- 2. Shanti Narayan, Analytical Geometry Three Dimensions.
- 3. Bell, R- J. T., Elementary Treatise on Coordinate Geometry.
- 4. Chaki, M. C, A Textbook of Analytical Geometry, Calcutta Publishers.
- 5. Chakraborty, J. G., and Ghosh, P. R., Advanced Analytical Dynamics.
- 6. Titu Andreescu, & Dorin Andrica (201 ... Complex Numbers from A to...Z. (2nd edition). Birkhauser.
- 7. James Ward Brown and Ruel V. Churcoll, Complex Variables and Applications, 8th Ed., McGraw — Hill Internation al Edition. Mfg)

Program: I	Diploma	Year: Second	Semester: III	
	Tathematics			
0	do: MIA	Course Title: Real Anal	ysis	
a) Ur from the the column and the co	nderstand many om R to a subsection R to a subsection in the superior limit superipply the ratio, onvergence of a same some of	et of R. ded, convergent, divergent, O or, limit inferior, and the lin root, alternating series and li	Cauchy and monotonic sequences and to nit of a bounded sequence. mit comparison tests for convergence and	calculate
Credit: 4	(Theory)	Compulsory		
Full Mar		Time: 3 Hours		Hours
Unit		Conte	ent	
I	Real Number System Axioms in \mathbb{R} , Absolute value of a real number; Bounds of a sets, Supremum and infimum of a nonempty subset of \mathbb{R} , The completeness property of \mathbb{R} , Archimedean property, Definition and types of intervals, Neighborhood of a point in \mathbb{R} , Open, closed and perfect sets in \mathbb{R}			
П	Sequences of Real Numbers: Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for sequences, Monotone convergence theorem, Subsequences, Bolzano sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.			
Ш	Infinite Series Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Tests for convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan & Bertrand's test, Higher logarithmic test, Gauss's test, Cauchy's root test, Integral test;			
IV	conditional convergence. Properties of absolutely convergent series.			10 h
Session	al Internal As	sessment (SIA) Full Marks A Internal written Exan B Over All Performance	s 25 Marks nination 20 Marks (1 Hr) including Regularity 05 Marks	
1. Re 2. Re 3. Re	eal Analysis: eal Analysis:	ded: Dasgupta & Prasad Lalji Prasad		

4. Principle of Real Analysis: S. C. Malik

Program: Class: UC	Diploma G	Year: Second	Semester: III	
Subject: I	Mathematics			
	. BATE	Course Title: Vectors	- 11 d destricted	
a) Un b) Un fur	derstand the con derstand the con actions, Grad, C	url and Divergence.	roducts of three and four vectors. scalar variable t, Scalar point functions, ve double and triple integral formulations kes' theorems in other branches of mather	
Credit: 4	4 (Theory)	Compulsory		
Full Ma	rks: 75	Time: 3 Hours		Hours
Jnit		Con	tent	110413
I	Product of three & four vectors: Product of 3 & 4 vectors, Reciprocal system of vectors, Lami's theorem, $\lambda - \mu$ theorem, work done, Moment of force. Couple.			
П	derivative and geometrical meaning, Derivative of product		15 h	
III	Grad, Divergence & Curl: Scalar point function and vector point function, grad, divergence and curl, their expansion formulae and 15 h			15 h
IV	properties. Green's, Stoke's & Gauss's Divergence theorem: Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem.			
Session	al Internal Ass	essment (SIA) Full Mark A Internal written Exar B Over All Performanc	ss 25 Marks mination 20 Marks (1 Hr) e including Regularity 05 Marks	
1.	s Recommend Advanced Eng. Vector Anal	1	oth edition). Erwin Kreyszig, Wiley	

Year: Second	Semester: IV	
S		
Course Title: Real Ana	lysis & Set theory	14
	S Course Title: Real Ana	s Second

Course Learning Outcomes: This course will enable the students to:

- a) Understand the concept of limit & continuity of a function.
- b) Understand the concept of differentiation and expansion of function with remainder.
- c) Understand the definition and condition for Riemann Integrability.
- d) Understand the generalized set operations and relation on sets.

Credit:	4 (Theory)	Compulsory	
Full Ma		Time: 3 Hours	Hours
Jnit		Content	Hours
I	continuity	Continuity: Limit, Continuity, Discontinuities, uniform properties of functions continuous in closed intervals, bounded variation.	15 h
II		Relationship with continuity, Taylor's theorem, Maclaurin's emainder after n terms, Power series expansion of $(1+x)^n$, and log $(1+x)$ using suitable remainder after n terms.	15 h
111	Riemann Integration Definition, Darboux's theorem I & II. Integrability condition, particular classes of bounded integerable function primitive, fundamental theorem, first and second Mean value theorem.		15 h
IV	Index famil	y of sets, Generalised set operations & De-Morgan Laws, set mapping: Countable and Uncountable sets, Equivalence d related fundamental theorem on partition. Partial order &	

Sessional Internal Assessment (SIA) Full Marks . 25 Marks

- A Internal written Examination .20 Marks (1 Hr) B Over All Performance including Regularity .05 Marks

- 1. Real Analysis by Lalji Prasad
- 2. Real Analysis by K. K. Jha
- 3. Principle of Real Analysis: S. C. Malik

Program: Diploma Class: UG	Year: Second	Semester: IV
Subject: Mathematics		
Course Code: MJ-7	Course Title: Ordinary	Differential Equation
Course Learning Outcom	es: This course will enable th	ne students to:

- a) solve ordinary differential equation of first order and understand its physical significance.
- b) solve higher order differential equation using concept of complimentary function &particular integral.
- c) solve ordinary differential equation with variable coefficients.
- d) solve simultaneous & total differential equation and understand its geometrical significance.

Credit:	4 (Theory)	Compulsory	<u> </u>	
	arks: 75	Time: 3 Hours	**	
Unit		Content	Hours	
I	solvable fo	First order higher degree ordinary differential equations, Equation solvable for y, solvable for x, Clairaut's form, singular solution orthogonal trajectories.		
II	Linear Differential Equation of higher order with constant coefficients. Homogeneous linear differential equation (Cauchy- Euler's Form)			
III	first deriva variation of	er linear differential equations: Normal forms (removal of tive) solution by changing independent variable and by parameters.	15 h	
IV	Simultaneo equation significance	us equation $dx/P = dy/Q = dz/R$ and Total differential $Pdx+Qdy+Rdz=0$ together with their geometrical e .	15 h	

Sessional Internal Assessment (SIA) Full Marks . 25 Marks

- A Internal written Examination 20 Marks (1 Hr) B. Over All Performance including Regularity 05 Marks

- Differential Equation by Lalji Prasad
- 2. Advanced differential equation by M. D. Raisinghania
- 3. Differential equation by J. N. Sharma

Program: I		Year: Second	Semester: IV	
Class: UG				
Subject: N	Lathematics		- 0.0 MÅ/	
Course Co	ode: MJ-8	Course Title: Group Th	estudents to:	
ourse Lear	ning Outcomes	:: This course will enable th	tios	
a) line	lerstand conce	pt of groups & their proper	tics.	
b) Und	derstand the co	ncept of subgroups and cy	clic groups.	
c) Und	derstand the co	ncept of Factor group, cen	tralizer and normalizer of group.	nerties.
d) Und	derstand the co	oncept of Homomorphism i	n Group & Isomorphism and related pro	P - 1 - 1 - 1
Credit: 4	(Theory)	Compulsory		
Full Mar		Time: 3 Hours		Hours
	Content		nours	
I	Definition and examples of groups including dihedral, permutation and quaternion groups, Elementary properties of groups.			
11	Subgroups and examples of subgroups, Cyclic groups, Properties of cyclic			15 h
	Lagrange's the	neorem,	Cimals groups Factor groups.	
Ш	Properties of cosets, Normal subgroups, Simple groups, Factor groups, Cauchy's theorem for finite abelian groups; Centralizer, Normalizer, Center of a group, Cycle notation for permutations, Properties of permutations, Even and odd permutations, alternating groups,			
IV	Group homomorphisms, Properties of homomorphisms, Group isomorphisms, Properties of isomorphisms; Fundamental theorem of homomorphism. Cayley's theorem and its applications.			15 h
Sessiona	I Internal Asse	essment (SIA) Full Marks	25 Marks	
Books	Desamond	od:		
1. Mo 2. Mo	odern Algebra	: Surjeet Singh Quazi Zai : A R Vasistha		
4. A	First Course in	n Abstract Algebra: J. B.	Fraleigh	

Program: Bachelor's Degree Class: UG	Year: Third	Semester: V	
Subject: Mathematics			
Course Code: MJ-9	Course Title: Mec		

Course Learning Outcomes: This course will enable the students to:

- a) Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.
- b) Understand the concept of friction and laws of friction. Student will be able to solve problems related to friction.
- c) Deal with the kinematics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles.
- d) Understand concept work and energy and related laws.

1 (Theory)	Compulsory		
4 (Theory) .rks: 75	Time: 3 Hours	Hours	
	Content	Hours	
for equilibrium, virtual work for different points of virtual	a system of coplanar forces acting on a particle or at a rigid body, Forces which can be omitted in forming the		
Laws, Angles and	d cone of friction, equilibrium on a rough inclined plane, ned to move on a rough curve under any given forces.	15 h	
velocities and Rectilinear moti	on and simple pendulum: S.H.M., compounding of two ve motion, motion under inverse square law.	15 h	
Rectilinear Mot principle, impu	ion (Kinetics): Newton's Law, work, KE, work Energy Ise, Torque and angular momentum, conservation of Jum and angular momentum, Hooke's law. Extension of		
	Reduction of syst for equilibrium, virtual work for different points of equations of virtue Laws, Angles and particle constrain Kinematics in twelocities and Rectilinear motion S.H.M., Repulsive Rectilinear Motoprinciple, impure apparaty, moments		

Sessional Internal Assessment (SIA) Full Marks 25 Marks

A Internal written Examination . 20 Marks (1 Hr) B Over All Performance including Regularity . 05 Marks

- 1. Mechanics: Singh & Sen
- 2. Statics and Dynamics. A. R. Vashishtha Krishna.
- 3. Statics. S. Ramsey Cambridge University Press.
- 4. Dynamics. S. Ramsey Cambridge University Press.

	Bachelor's Degree	Year: Third	Semester: V			
class: UG	Vethematics		o III bas Awithn	retic		
	Mathematics	Course Title: Theo	ry of Equation & Higher Arithn	ictic		
	ode: MJ-10	will enable the stu	dents to:			
urse Lear	rning Outcomes. This ec	using relation of roots	and coefficients			
a) solv	ve cubic equation by Ca	rdon's method.				
b) sol	ve cubic equation by co	f congruences and their	properties.			
c) un	derstand the concept o	congruences				
d) sol	lve simultaneous linear	Could delices.				
	(T)	Compulsory				
	(Theory)	Time: 3 Hours		Hanne		
Full Ma	rks: 75	~		Hours		
Unit		and their symmetric	c functions with coefficients.	15 h		
	Relations of root and their symmetric functions with coefficients. Transformation of equations, Descarte's rule of signs.					
I	Transformation of a bi-					
	Cardon's solution of a cubic equation, Descarte's solution of a bi-					
11	Cardon's solution of a cubic equation, poor guadratic equation, Discriminant and nature of roots.					
11	Divisibility, H.C.F. Primes & Unique factorization in N & Z the					
	Divisibility, H.C.F.	Primes & Unique	e class, complete and reduced	15 h		
	Divisibility, H.C.F. Primes & Unique factorization in an and reduced Diophantine equation ax+by=c. Residue class, complete and reduced residue system, congruences and their properties, Fermat's theorem, residue system, and Wilson's theorem.					
III	residue system, congruences and them per state that them per system, and Wilson's theorem.					
	Euler's theorem, a					
	Algebraic congri	uences, Solution		15 h		
	("3") (hinese remainder	theorem, non-linear algebraic	151		
IV	congruency with r	$ax \equiv b \pmod{m}$, Chinese congruency with respect to the modulus.				
		OLD E II Monks 25	Marks			
Session	al Internal Assessmen	t (SIA) Full Marks . 25 rnal written Examinat	tion 20 Marks (1 Hr.)			
	A Inte	r All Performance inc	luding Regularity . 05 Marks			
	s Recommended: Theory of equation:	Lalii Prasad				
3.	Basic Number theor	y : S. B. Malik nber Theory : Niven (& Zukerman			
1	Introduction to Nun	inder theory . Invent				

rogram:	Bachelor's Degree	Year: Third	Semester: V	
	Mathematics		1 A lenia	
- 0	1. MIT 11	Course Title: Con	nplex Analysis	
a) ap b) ap	orning Outcomes: This couply the concept of continuous the concept of analytic derstand standard transforderstand the concept of	c function & form ana ormations.	01101101	
0 14	4 (Theory)	Compulsory		
Full Ma	4 (Theory)	Time: 3 Hours		Hanne
		Content		Hours
Unit I	continuity, partial derivatives, differentiability, and related			15 h
п	Riemann Equations analytic function, narmonic function, services function Miln Thompson Method.			15 h
III	W=CZ W=1/z, W=(a	z + b) / (cz + a) (bank)		15 h
IV	functions special cor	nformal transformat	rmation effected by analytic ions w=z², w=e², w=sinz	15 h
Session	al Internal Assessment (SIA) Full Marks 25	Marks on . 20 Marks (1 Hr.) uding Regularity 05 Marks	
	s Recommended: Complex Analysis by L Complex Analysis by D	alii Prasad		

Program.	Bachelor's Degree	Year: Third	Semester: VI		
Class: UC					
	Mathematics				
2 0	- J. MI 12	Course Title: Dyn	amics & Statics		
a) apr	rning Outcomes: This co ply the condition for equ	illibrium in problems.	idents to.		
b) sol	lve problems related to	common cateriary.	laws of motion.		
c) so	lve problems related to	gravitation % Newton .	i laws of modern		
d) so	lve problems related to	projectile.			
Candit: A	4 (Theory)	Compulsory			
Full Mar		Time: 3 Hours			
Unit	Content			Hours	
I	Conditions for equilibrium of forces in three dimensions. Wrench pitch, Null Lines.				
II	(problems involving	Common Catenary, Stable equilibrium, energy test of stability (problems involving one variable only).			
III	Motion of a particle under a central force, Differential equation of a central orbit in both polar and pedal co-ordinates. Newton's law of gravitation, planetary orbits, Kepler's laws of motion.				
IV	Motion of projectile under gravity in a non-resisting medium. Motion of the mass centre and motion relative to the mass centre D'Alembert's principle. Two-dimensional motion of a rigid body rotating about a fixed axis, compound pendulum.				
Sessiona	A Internal Assessment (A Internal B Over	(SIA) Full Marks . 25 nal written Examinat All Performance incl	Marks on 20 Marks (1 Hr.) uding Regularity 05 Marks		
1. 2.	Recommended: Dynamics Part I & II , Dynamics by P.P. Gup Statics by Loney Statics by A. R. Vasis	A. S. Ramsay ota, Sanjay Gupta			

Program: Class: U	Bachelor's Degree	Year: Third	Semester: VI	
	Mathematics			
~ (1. MIT 13	Course Title: LPP	& Statistics	
a) so b) so c) st	arning Outcomes: This co lve problems related to l lve problems related to l udy the nature of curve, udy correlation and do n	ransportation & assign fit a suitable curve for	nment problems.	
Cradity	4 (Theory)	Compulsory		
Full Ma		Time: 3 Hours		Hours
Unit	Content			
I	Graphical Method. Simplex method including big 11 method,			15 h
П	Transportation and	Assignment. Dete	rministic replacement models, and n jobs.	15 h
III	Measures of Skewn	ess and Kurtosis. Cu	urve fitting and method of least	15 h
IV	Correlation and reg		ctations and variance.	15 h
Session	B Over	(SIA) Full Marks 25 nal written Examinat All Performance incl	Marks ion 20 Marks (1 Hr.) uding Regularity 05 Marks	
1.	s Recommended: Linear Programming Linear Programming Operations Research: Mathematical Statisti	S D. Sharma		

rogram: Class: U (Bachelor's Degree	Year: Third	Semester: VI	4
	Mathematics		· II e Ding	
	1 N/T 1/	Course Title: Analy	ysis II & Ring	
a) tes b) so	arning Outcomes: This countring Outcomes: This countries the convergence of implies multiple integrals using derstand the concept of field	roper integral. g theorems like Green ring and Ideals.	's theorem, Stokes theorem.	
Cradit:	4 (Theory)	Compulsory		
Full Ma	rks: 75	Time: 3 Hours		Hours
Unit		Content	Tt- Absolute	Hours
I	Convergence of improper integrals, Comparison Tests, Absolute convergence, Able's and Dirichlet's Tests. Frullani's Integrals, Def. Duplication formula, inter-relation.			15 h
П	Multiple Integrals via of order of integration Integral, Surface Integral, Surface Integral	Multiple Integrals via Dirichlet's Theorem Liouville's extension. Change of order of integration and change of variables. Vector Integration: Line Integral. Surface Integral, Green's theorem in R2, Stoke's theorem,		
III	Rings, Preliminary Re	Rings, Preliminary Results, Special Kinds, subrings and Ideals. Quotient		
IV	Fields and Homomor	Fields and Homomorphism. Field for quotient and embedding theorem, polynomial rings, Euclidian ring & Unique factorization in it.		
Session	al Internal Assessment (SIA) Full Marks 25 I	Marks	
1. 2. 3. 4.	S Recommended: Mathematical Analysis Mathematical Analysis Integral Calculus: Will Vector Calculus: Shan Modern Algebra: A. R Modern Algebra: Goya	: Shantı Narayan :: Mallick Arora liamson iti Narayan Vasistha		

Bachelor's Degree	Year: Third	Semester: VI	
3			
Mathematics	The second second	and Analysis & Programming	σ in C
ode: MJ-15	Course Title: Num	derical Analysis & Frogramming	5 ~
rning Outcomes: This cou	urse will enable the sti	nathods	
d roots of equation and i	nterpolate by numeric	di memods.	
ferentiate % integrate by	numerical methods.	a programming	
ow about the logics and	algorithms needed for	computer programming.	
(Theory)	Compulsory		
	Time: 3 Hours		
	Content		Hours
le l'action l'adrande dill dell'ille litter polation, action			
Numerical Differenti	ation: Numerical fo Simpsons and Trap	rmulas. Numerical Integration ezoidal Rule.	15 h
Programmer's model of a computer. Algorithms. Flow Charts. Data Types. Arithmetic and input/output instructions. Decision control			15 h
Logical and Conditional operators. Loop. Case control structures. Functions, Recursions, Preprocessors. Arrays, Puppeting of string.			15 h
	Mathematics ode: MJ-15 rning Outcomes: This co d roots of equation and if ferentiate % integrate by ow about the logics and (Theory) rks: 75 Solution of Equations Polynomials. Interpol differences Schemes Numerical Differenti Quadrature Formula Programmer's mode Types. Arithmetic structures. Decisions Logical and Condit Functions, Recursic Structures. Pointers	Mathematics Index MJ-15 Course Title: Numerical methods of a computer of Solution of Equations: Bisection, regular differences Schemes, Interpolation: Numerical methods of Solution of Equations: Bisection, regular differences Schemes, Interpolation: Numerical for Quadrature Formula Simpsons and Trape Programmer's model of a computer. Types. Arithmetic and input/output structures. Decisions statements. Logical and Conditional operators. Logical and Conditional operators. Structures. Pointers. File formatting. Internal Assessment (SIA) Full Marks 25 in the structure of the structure of the structures. Types of the structures. Pointers. File formatting.	Mathematics Ode: MJ-15 Course Title: Numerical Analysis & Programming Outcomes: This course will enable the students to: d roots of equation and interpolate by numerical methods. ferentiate % integrate by numerical methods. ow about the logics and algorithms needed for computer programming. (Theory) Compulsory Tks: 75 Time: 3 Hours Content Solution of Equations: Bisection, regula-falsi, Newton's method, Root of Polynomials. Interpolation: Lagrange and Hermite Interpolation, divided differences Schemes, Interpolation Formula using Differences. Numerical Differentiation: Numerical formulas. Numerical Integration Quadrature Formula Simpsons and Trapezoidal Rule. Programmer's model of a computer. Algorithms. Flow Charts. Data Types. Arithmetic and input/output instructions. Decision control structures. Decisions statements. Logical and Conditional operators. Loop. Case control structures. Functions. Recursions, Preprocessors. Arrays, Puppeting of string.

)	Bachelor's Degree with	Year: Fourth	Semester: VII		
rogram:	Hons. with Research				
class: U					
	Mathematics			tion	
G C	Cada: MI 16	Course Title: Fl	uid Mechanics & Special Func	tion	
	. O tomass. This course	will enable the stud	ents to:		
	I I I I I I I I I I I I I I I I I I I	its pressure and con	tic or process		
	1 : H - fluid motion using P	quation of continuit	y and Bernoulli's theorem.		
	difforanti	al equations about 0	ordinary and singular points.		
d) ur	nderstand the properties of Le	egendre polynomials	and properties of Hypergeometric		
	inctions.				
		T			
	4 (Theory)	Compulsory Time: 3 Hours			
Full Ma	nrks: 75	- 1111		Hours	
Unit	Nature and Properties of Fluid pressure, pressure of heavy liquids.			15 h	
I	Nature and Properties of Fluid pressure, pressure of ressure. Equilibrium of fluids under given system of forces. Centre of pressure. Thrust on plane and curved surfaces. Lagarangian and Eulerian				
II	methods, Equation of co	ntinuity. Euler's e n.	quation of motion	15 h	
111	Methods and forms of method). [N.B. result of analysis taken for granted] Bessel's equation: Solution function for J _n (x), equation Bessel's functions.	Series solution: Ordinary point, singular point (regular), General Methods and forms of series solution (Indicial equation-frobenius method). [N.B. result of analysis regarding validity of series. Solution are to be taken for granted] Bessel's equation: Solution Recurrence formula for J _n (x); generating function for J _n (x), equations reducible to Bessel equation, Orthogonality			
IV	polynomials. Hyperge	g function for P.(cometric function ation theorem.		15 h	
Session	nal Internal Assessment (SIA A Internal B Over All	A) Full Marks - 25 N Written Examinatio Performance includ	n 20 Marks (1 Hr.) ling Regularity 05 Marks		
1.	s Recommended: Hydrostatics: J.P. Sinha Hydrodynamics: Ramsey Advance differential equa	/ M D Raisingani	a		

	Bachelor's Degree with	Year: Fourth	Semester: VII		
rogram	s/Hons. with Research				
lass: U					
	Mathematics				
(Code: MIL17	Course Title: Me	etric space & Discrete Mather	natics	
	wing Outcomos: This course	will enable the stude	ents to:		
1 D	avalor the concept of metric	snace and related	properties.		
1 1	the idea of completenes	is of a space with it	is properties.		
\ T	- own the idea of continuous	and uniform condi-	uous runctions.		
d) Le	earn the concept of cardinality	& mathematical ind	luction.		
e) u	nderstand the concept of grap	h and lattices.			
	4 (Theory)	Compulsory Time: 3 Hours			
Full Ma	urks: 75	1 111111		Hours	
nit		Content	pen sets Interior closed Sets		
I		i metric spaces, O	pen sets, Interior closed Sets	15 h	
1	closure.	D. 1.1. theo	cam Cantor's Intersection		
	Convergence, completer	eness, Bair's theorem, Cantor's Intersection ps, Uniform Continuity, and related extensions.		15 h	
II	theorem. Continuous map	s, Uniform Collini	and related extensions		
	Sets and Propositions-Ca	ardinality. Mathem	atical Induction. Principle of		
C/Draw !	- 1 1 A solution	Delations and Fi	inclions - Dillary Relations.	15 h	
III	Equivalence Relations and partitions. Partial. Order Relations and Eattless,				
	Lains and Antichaine Pi	geon Hole Principl	e.		
	Graphs and Planar Gra	ph, basic termino	logy. Multigraphs. Weighted		
	a 1 Detle and Circu	ite Shortest naths	Elliellali Fallis and Chedits.		
IV	Travelling Salesman Problem. Planer Graphs. Boolean Algebras – Lattices and algebraic structures. Duality. Distributive and complemented Lattices.				
	and algebraic structures.	Duality, Distribution	ections and Expression.		
	Boolean lattices and Alg				
Session	al Internal Assessment (SIA)	Full Marks 25 Ma	arks		
50351011	A Internal w	ritten Examination	20 Marks (1 Hr.)		
			ing Regularity . 05 Marks		
Book	s Recommended:	I lieu Flements	of Discrete Mathematics: M	1cGraw	
	International Ed.				
2.	Topology: K.K. Jha / J.N. Mathematical Analysis: Sl	Sharma nanti Narayan / Ma	allick Arora		
	Mathomatical Analysis. 3				

rogram: Bachelor's Degree with	Year: Fourth	Semester: VII	
Honours/Hons. with Research			
Class: UG			
Subject: Mathematics	The second of	transform	
C-do: MI 18	Course Little: In	tegral Transform	
ourse Learning Outcomes: This course	will enable the stud	ents to.	
a) learn concept of Laplace and inv	verse Laplace transit	51111.	
b) solve the differential equation (using Laplace transfo	orm.	
c) learn the concept and propertie	es of Fourier transfo	rm.	
d) learn application of Fourier sine	e & cosine transform	l.	
Credit: 4 (Theory)	Compulsory Time: 3 Hours		
Full Marks: 75	Content		Hours
Unit	Content	ementary functions, properties,	
Laplace transform: Det, tr	anstormation of ele	integrals, multiplication by t^n	15 h
I inverse transform, transfo	rm derivatives and	integrals, marry	
division by t.	Convolution	theorem and application to	CHARLES MANAGEM
Inverse Laplace Transfo	orm, Convolution	theorem and app	15 h
II differential equation.		c l C its Faurion	
Infinite Fourier Transforr	n: Infinite Fourier	sine transform, Infinite Fourier	15 h
III cosine transform, Relatio	n between Fourier	& Laplace transform.	15 11
The Finite Fourier Tran	sform & Integral:	Finite Fourier sine transform,	15 h
IV Finite Fourier cosine tran	nsform, Fourier Int	egral.	
I A seemont (SIA)	Full Marks 25 M	arks	
A Internal w	vritten Examination	1. 20 Marks (1 Hr.)	
B. Over All I	Performance includ	ing Regularity 05 Marks	
I I and and & Fourier Transf	forms J.K. Goyal, I	C.P. Gupta, G.S. Gupta	
2. Integral Transform & Fourier	Series: A. N. Srivast	ava	

retechniques to so method to solve r phenomena usi	will enable the stud lve first & second of non-linear equation ng partial differen Compulsory Time: 3 Hours Content n, formation, linear	of second order. tial equations such as the heat a	Hours 15 h
nes: This course vonethod to solve rephenomena usi	will enable the stud lve first & second of non-linear equation ng partial differen Compulsory Time: 3 Hours Content n, formation, linear	ents to: order partial differential equations. of second order. tial equations such as the heat a	Hours
nes: This course vonethod to solve rephenomena usi	will enable the stud lve first & second of non-linear equation ng partial differen Compulsory Time: 3 Hours Content n, formation, linear	ents to: order partial differential equations. of second order. tial equations such as the heat a	Hours
nes: This course vonethod to solve rephenomena usi	will enable the stud lve first & second of non-linear equation ng partial differen Compulsory Time: 3 Hours Content n, formation, linear	ents to: order partial differential equations. of second order. tial equations such as the heat a	Hours
nes: This course von techniques to so method to solve rephenomena usi	Compulsory Time: 3 Hours Content n, formation, linear	of second order. tial equations such as the heat a	Hours
	Time: 3 Hours Content n, formation, lines		
	Time: 3 Hours Content n, formation, lines		
	n, formation, linea		
			15 h
equation of o	den 1 four for	- I I I I I I I I I I I I I I I I I I I	
omogeneous III .I.	near equation with	rms Charpits method, Jacobi constant co-efficient Rules of	15 h
Non-linear equations of second order, Monge's method.			
Value Problen ation and one-di	n: Derivation and mensional heat ed	d solution of one-dimensional quation.	15 h
ssessment (SIA) A Internal w B Over All P	Full Marks . 25 M ritten Examination erformance include	arks n . 20 Marks (1 Hr.) ling Regularity . 05 Marks	
	Value Problemation and one-dissessment (SIA) A Internal w B Over All P	Value Problem: Derivation and attion and one-dimensional heat economic sessment (SIA) Full Marks . 25 M A Internal written Examination B Over All Performance included:	Value Problem: Derivation and solution of one-dimensional ation and one-dimensional heat equation. ssessment (SIA) Full Marks . 25 Marks A Internal written Examination . 20 Marks (1 Hr.) B Over All Performance including Regularity . 05 Marks

Honours/ Class: UC		Year: Fourth	Semester: VIII	
Subject: I	Mathematics	Title: I	inear Algebra & Linear Diffe	rence
Course C	ode: MJ-20	equation		
a) un b) un	rning Outcomes: This course wi derstand concept of basis of ver derstand the concept of rank & nstruct difference equations an ad solution of linear difference e	nullity.		
Cradit: 4	4 (Theory)	Compulsory		
Full Ma	rks: 75	Time: 3 Hours	S I	Iours
Unit		Content		10013
I	Vector Space: Def. & properties, subspaces, linear dependence, dimension and basis of a finite dimensional vector space, Quotient space, Direct sums and complements matrices and change of basis. Inner product & norm in a I. S., properties of inner product, Schwartz inequality, orthogonal set, orthogonal basis and Gram-schmidt construction for finite dimensional inner product space.			
II	Linear transformation: De transformations, Dual spatransformation, similar mate (Algebraic geometric and response)	rices, even matricularity).	of nullity, algebra of linear duality. Matrices and linear ces, diagonalisation Eigen root	15 h
Ш	Difference Equation Order	, Solution of Dif	ference Equation, Existence & $y_{n+1} = Ay_n + C$	15 h
IV	Linear Difference Equation	on with constant Fundamental s their solution (C	coefficient: Basic Definition. et of solution, Homogeneous General & Particular), Special	15 h
Session	al Internal Assessment (SIA)	Full Marks 25 M	arks n . 20 Marks (1 Hr.) ling Regularity . 05 Marks	
Book 1. 2.	s Recommended: Modern Algebra: Surjeet S Linear Difference Equation			

Program: Bachelor's Degree with Honours/Hons. with Research Class: UG	Year: Fourth	Semester: VIII	
Subject: Mathematics			
Course Code: AMJ-1	Course Title: To	ppology	
Course Learning Outcomes: This course w	ill enable the studer	nts to:	

- a) learn about the concept of compactness in metric space.
- b) define topological space its bases and different types spaces.
- c) learn different types of compactness in topological spaces.
- d) learn different types separation axioms in topological spaces and also the connectedness of topological spaces

Credit	4 (Theory)	Compulsory		
Full M	arks: 75	Time: 3 Hours		
Unit		Content		
I	Compactness in metric s	ric space, Ascoli's theorem. Topological spaces:		
II	Definition, examples, base, sub-base, first axiom space, second axiom space, comparison of topologies.			
III	Compactness: Compact space, Lindeloff space, product space, Tychonoff's theorem, locally compactness.			
IV	Separation: T ₁ – space, T ₂ – space, normal & completely regular space, Uryshon's lemma, Tietze extension theorem, Uryshon's metrization theorem. Connectedness: connectedness & its properties.		15 h	

Sessional Internal Assessment (SIA) Full Marks 25 Marks

- A Internal written Examination 20 Marks (1 Hr.) B Over All Performance including Regularity 05 Marks

- 1. Real Analysis: H. L. Royden, P. M. Fitzpatrick
- 2. Topology: J. N. Sharma, J. P. Chauhan
- 3. Advanced General Topology: K. K. Jha

Hon	gram: Bachelor's Degree with ours/Hons. with Research s: UG	Year: Fourth	Semester: VIII	
	ect: Mathematics			
	rse Code: AMJ-2	Course Title: Co		
Course	e Learning Outcomes: This course wi	Il enable the studen	mplex Analysis II	
a)	apply complex integration in solvir	ng problems.	15 (0.	
b)	learn about power series expansio	n and their converge	ence	
c)	apply method of contour integration	on.	siice.	
d)	learn about conformal mapping.			
	it: 4 (Theory)	Compulsory		
-	Marks: 75	Time: 3 Hours		-11-11-11-11-11-11-11-11-11-11-11-11-11
Unit	•	Content		Hours
I	Integral: Cauchy's integral th	eorem, Cauchy's i	ntegral formula, Morera's	110413
	Rouche's theorem, fundament	al theorem of aloe	bra	15 h
II	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int	ial theorem of alge ius of convergence rem of power seric egration and differ	bra. of power series, absolute es, uniqueness theorem of entiation theorem.	15 h
	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theore power series, term by term int Residue & poles, contour inter	ial theorem of alge ius of convergence rem of power serie egration and differ gration and problem	bra. of power series, absolute es, uniqueness theorem of entiation theorem.	
II III IV	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int Residue & poles, contour inter Conformal mapping: Conformal condition for conformal mapping from unit circle to unit circle and	ial theorem of alge ius of convergence rem of power serie egration and differ gration and problem and bilinear mapping, mapping from har related problems.	bra. of power series, absolute es, uniqueness theorem of entiation theorem.	15 h
II III IV	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int Residue & poles, contour integ Conformal mapping: Conformal condition for conformal mappin from unit circle to unit circle and nal Internal Assessment (SIA) Full A Internal written	ital theorem of alge itus of convergence rem of power serie egration and differ gration and problem and bilinear mapping, mapping from his related problems.	bra. c of power series, absolute es, uniqueness theorem of entiation theorem. ms ling, necessary & sufficient alf plane to circle, mapping	15 h
II IV Session Books	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int Residue & poles, contour integ Conformal mapping: Conformal condition for conformal mapping from unit circle to unit circle and Internal Assessment (SIA) Full A Internal written B Over All Performs Recommended:	ital theorem of alge itus of convergence rem of power serie egration and differ gration and problem and bilinear mapping, mapping from his related problems. Marks 25 Marks Examination 20 Marks	bra. of power series, absolute es, uniqueness theorem of entiation theorem. ms oing, necessary & sufficient alf plane to circle, mapping	15 h
II IV Session Books	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int Residue & poles, contour inter Conformal mapping: Conformal condition for conformal mapping from unit circle to unit circle and al Internal Assessment (SIA) Full A Internal written B Over All Performs Recommended: Complex Variable: Churchill	ial theorem of alge its of convergence rem of power serie egration and differ gration and problem and bilinear mapping, mapping from his related problems. Marks 25 Marks Examination 20 Marks including Research	bra. c of power series, absolute es, uniqueness theorem of entiation theorem. ms ling, necessary & sufficient alf plane to circle, mapping	15 h
III IV Session Books 1. 2.	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int Residue & poles, contour inter Conformal mapping: Conformal condition for conformal mapping from unit circle to unit circle and Internal Assessment (SIA) Full A Internal written B Over All Performs Recommended: Complex Variable: Churchill Theory of Functions: Titch Marsl	ial theorem of alge its of convergence rem of power serie egration and differ gration and problem and bilinear mapping, mapping from his related problems. Marks 25 Marks Examination 20 Manage including Remarks	bra. c of power series, absolute es, uniqueness theorem of entiation theorem. ms ling, necessary & sufficient alf plane to circle, mapping	15 h
III IV Session Books 1. 2. 3.	Rouche's theorem, fundament Power series: formula for rad & uniform convergence theorem power series, term by term int Residue & poles, contour inter Conformal mapping: Conformal condition for conformal mapping from unit circle to unit circle and al Internal Assessment (SIA) Full A Internal written B Over All Performs Recommended: Complex Variable: Churchill	ial theorem of alge its of convergence rem of power serie egration and differ gration and problem and bilinear mapping, mapping from his related problems. Marks 25 Marks Examination 20 Manance including Remarks	bra. c of power series, absolute es, uniqueness theorem of entiation theorem. ms ling, necessary & sufficient alf plane to circle, mapping	15 h

Program:	Bachelor's Degree with	Year: Fourth	Semester: VIII		
Jonaurs	/Hons. with Research				
Class: UC					
	Mathematics		Theorem	.,	
0 . 0	Vada, AMI3	Course Title: Re	al Analysis & Measure Theory	У	
	This course	will enable the stude	ents to:		
a) lea	arn the concept of uniform co	nvergence in sequer	ice & series of functions.		
b) lea	arn about Fourier series and it	s applications.	i a		
c) lea	arn the concept of measure th	neory and its proper	ties.		
d) kn	now about the measurable fur	nctions & its propert	ies.		
Credit: 4	4 (Theory)	Compulsory			
Full Ma		Time: 3 Hours		Hours	
Unit		Content		110413	
I	series of real function. Cau continuity of the sum of uniform convergence. T	ichy's general prin a series of func- erm by term int	convergence of sequence and ciple of uniform convergence, tion. Weiestrass's M-test for egration and differentiation.	15 h	
п	orthonormal system. Be trigonometric Fourier se Riemann-Lebesgue theor	eries, Dirichlet's eriodic functions.	of a function relative to an pointwise convergence of integral, Perseval's theorem, finding trigonometric Fourier	15 h	
III	Measure theory: Outer approach, arithmetical patheorems and examples of	measure, measuratoroperties of measurator of uncountable sets		15 h	
IV	Measurable Functions: Closure of class of measurable function under all algebraic and limit operations, Littlewood's third principle trigonometric Fourier series representation of periodic functions. Function bounded over a set of finite measure, condition of measurability, Lebesgue integral and its arithmetical properties, comparison with R-integral, bounded convergence theorem.				
Session	al Internal Assessment (SIA) Full Marks 25 M	arks n . 20 Marks (1 Hr.) ling Regularity . 05 Marks		
Book	s Recommended:				
1.	Principle of Mathematical	Analysis: Walter F	Cudin		
2.	Mathematical Analysis: Sl	nanti Narayan			
3.	Real Analysis: H. L. Royd	en K. K. Iba			
4.	Advanced Real Analysis:	K. K. Jna Cupta			
5.	Measure theory: Gupta &	Gupta			

Minor Syllabus

Semester	Paper	Code	Course Title	Credit
I	Minor-1A	MN-1A	Calculus	4
II	Minor-2A	MN-2A	Discrete Mathematics	4
Ш	Minor-1B	MN-1B	Real Analysis	4
IV	Minor-2B	MN-2B	Discrete Mathematics-II	4
V	Minor-1C	MN-1C	Vectors	4
VI	Minor-2C	MN-2C	Probability Theory	4
VII	Minor-1D	MN-1D	Real Analysis-II	4
VIII	Minor-2D	MN-2D	Operations Research	4

	T- Di i	Semester: I	
Program: Certificate	Year: First	Semester. 2	
Class: UG			
Subject: Mathematics			
Course Code: MN-1A	Course Title: Calculus		

Course Learning Outcomes: This course will enable the students to:

- a) Understand the concept of functions, limits, and continuity, and apply them to solve mathematical problems.
- b) Use differentiation rules, including the chain rule and mean value theorem, to differentiate real-valued functions and apply successive differentiation and Leibnitz's theorem to solve calculus problems.
- c) Develop skills in finding antiderivatives, computing definite integrals using Riemann sums and the fundamental theorem of calculus, and using various integration techniques to solve realworld problems.

d) Gain proficiency in integrating various types of functions, analyzing curves, and calculating area and volume of surfaces of revolution using integration techniques.

Credit: 4	(Theory)	Compulsory			
Full Ma		Time: 3 Hours	Hours		
Unit		Content	Trouse		
I	Limite of fu	and Limits: Definition of functions and their properties, nctions and their properties, Continuity of functions.	12 h		
	Differentie	l calculus: Differentiability of a real valued function,			
II	Geometric	al interpretation of differentiability, Rules of differentiation, of differentiation, Mean value theorem and its applications,	18 h		
	Cuccossive	differentiation, Leibnitz's theorem.			
Ш	sums and	Integration: Antiderivatives, Indefinite and definite integrals, Riemann sums and the definite integral, Fundamental theorem of calculus, Properties of definite integrals, Integration Techniques.			
IV	Integral Reduction of curve,	Calculus: Integration of rational and irrational functions, formula, Computing of definite integral, Curve tracing, Length Computing of double and triple integrals, Area and Volume of revolution.	18 h		

Sessional Internal Assessment (SIA) Full Marks – 25 Marks A - Internal written Examination - 20 Marks (1 Hr) B - Over All Performance including Regularity - 05 Marks

- 1. R. K. Dwivedi (2019). Calculus, 1st Edition, Pragati Prakashan, Meerut, India.
- 2. Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India.
- 3. Gabriel Klambauer (1986). Aspects of Calculus. Springer-Verlag.
- 4. Wieslaw Krawcewicz & Bindhyachal Rai (2003). Calculus with Maple Labs. Narosa.
- 5. Gorakh Prasad (2016). Differential Calculus (19th edition). Pothishala Pvt. Ltd.
- 6. George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas' Calculus (14th edition). Pearson Education.

Class: UG		Year: First Semester: II		
	Mathematics			
Carrega	Code: MN-2A	Course Title: Discrete	Mathematics	
Cour a)	Se Learning O	utcomes: This course will oncept equivalence relation oncept of bounds in POSET hematical logic and logical	l enable the students to: n & partial order relation. and able to understand the concept of Latt al operations to various fields.	ice.
Credit:	4 (Theory)	Compulsory		
Full Ma	rks: 75	Time: 3 Hours		Hours
Unit		Cont	ent ent	110413
I	Relation: Reflexive, Symmetric, Antisymmetric & transitive relation, Partition, Equivalence relation, Congruence Modulo Relation, Induced relation, Fundamental theorem.			
п	maximal & m	inimal element. Definit	er Set, l.u.b. & g.l.b, inf., sup., ion & examples of Lattice, Zorn's	15 h
Ш	Logic: Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions, and precedence of logical operators.			15 h
IV	Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.			15 h
Session:	al Internal Asses	sment (SIA) Full Marks	s 25 Marks nination 20 Marks (1 Hr) including Regularity 05 Marks	

- 2. R. P. Grimaldi, Discrete Mathematics and Combinatorial Mathematics, Pearson Education,
- 3. Discrete Mathematics by M. K. Gupta; Krishna Prakashan.
- 4. Discrete Mathematics by Lipschutz, Lipson & Patil; Schaum's Outlines

-		Year: Second	Semester: III	
Program:	Diploma	Year. Second		
Class: UC	3			
Subject: I	Mathematics	Course Title: Real Ana	lysis	
0	Jan MN 1R	Outcomes: This course will	Lenable the students to:	of
a) b)	functions from Recognize boutheir limit sup Apply the ratabsolute con-	any properties of an n R to a subset of R. unded, convergent, divergent perior, limit inferior, and the tio, root, alternating series	t, Cauchy and monotonic sequences and to e limit of a bounded sequence. and limit comparison tests for converg	ence and
d)				
		Compulsory		
Credit:	4 (Theory)	Time: 3 Hours		Hours
Credit:	4 (Theory) arks: 75	Time: 3 Hours	I number; Bounds of a sets, Supremum	

Archimedean property, Definition and types of intervals, Neighborhood of

Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Monotone convergence theorem, Subsequences, Bolzano sequences.

Limit superior and limit inferior of a sequence of real numbers, Cauchy

sequence, Cauchy's first theorem on limit, Cauchy's convergence

Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence;

Tests for convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test,

criterion. Completeness property of set of real number.

Cauchy's condensation Test, De Morgan & Bertrand's test.

a point in \mathbb{R} , Open, closed and perfect sets in \mathbb{R}

Sequences of Real Numbers:

A Internal written Examination 20 Marks (1 Hr) B Over All Performance including Regularity 05 Marks

Books Recommended:

II

III

1. Real Analysis: Dasgupta & Prasad

2. Real Analysis: Lalji Prasad

3. Real Analysis: K.K. Jha

4. Principle of Real Analysis: S. C. Malik

15 h

20 h

10 h

Program:	Diploma	Year: Second	Semester: IV			
Class: UC						
	Mathematics					
C	ada: MN 2R	Course Title: Discre	ete Mathematics-II			
Сония	o Loorning	Outcomes: This course	will enable the students to:			
a) Uno	derstand and ex	xplain the basic concept	s of graph theory.			
b) Apr	aly the basic co	ncepts of mathematical	logic.			
c) Ana	alyze the basic	concepts of mate matic	cal logic. concepts of graph theory.			
d) Eva	aluate some rea	al time problems sing co	oncepts of graph theory.			
Cradit: 4	(Theory)	Compulsor				
Full Mar		Time: 3 Hou				
Jnit	K5. 70	Co	ontent	Hours		
I	Logic: Boolean alge	ebra, Boolean expressi	on, application to switching circuits.	15		
П	Graph Theory: Basic Terminology, Walks, paths, circuits, connectedness, Handshaking Lemma, Isomorphism, Sub graphs, Reach ability, Union and Interaction of Graphs. Euler Graph, Shortest path problem, Hamiltonian graph, Traveling Salesman Problem, Bipartite graphs.					
ш	Trees: Introduction to trees, Rooted trees, path length in rooted trees, spanning trees, Fundamental circuits, spanning trees of a weighted graph, cut sets and cut vertices, Fundamental cut set, Minimum spanning tree.					
IV	Directed Graph: Directed graphs and connectedness, directed trees, Matrix representation of a graph, Planar graphs Combinational and Geometric Duals, Kuratowski's graphs, Detection of planarity, 5 colour problem.					
Sessiona	l Internal Ass	essment (SIA) Full Ma A Internal written Ex B Over All Performan	nrks 25 Marks xamination 20 Marks (1 Hr) nce including Regularity 05 Marks			
Books	Recommend	ed:	natics Tata McGraw Hill 2nd Edition, 2000.			
1.	C.L. Liu, Eleme	nts of Discrete Mathem	natics, Tata McGraw Hill, 2nd Edition, 2000.	Il publicatio		
2.			ns to Engineering and Computer Science, Ph	- Promise and		
	3rd edition, 2	009	Dragati Dragati Dr	ublication 7		
1 12	Harikishan, Sh	nivraj Pundir and Sandee	ep Kumar, Discrete Mathematics, Pragati Pu	abilicación, i		
3.						
	Edition, 2010		athematical Structure, PHI Publication, 6th	Edition 20		

Program:	Bachelor's Degree	Year: Third	Semester: V		
Class: UC	Dachelor o 2 -g-				
	Mathematics				
- 0	I MOVIAC	Course Title: Vect	ors		
a) Und b) Und fun	derstand the concept of vections, Grad, Curl and Di	ector function of scalar vergence.	e the students to. s of three and four vectors. /ariable t, Scalar point functions, ve and triple integral formulations eorems in other branches of mather		
Credit: 4	(Theory)	Compulsory			
Full Mar	ks: 75	Time: 3 Hours		Hours	
Jnit	Marie Carlo	Content	Designated 1	110413	
I	Product of three & four vectors: Product of 3 & 4 vectors, Reciprocal system of vectors, Lami's theorem, $\lambda - \mu$ theorem, work done, Moment of force. Couple.				
II	Vector Differentiation: Vector function of scalar variable t, it's derivative and geometrical meaning, Derivative of product of two and three vectors				
III	Grad, Divergence & Curl: Scalar point function and vector point function, grad, divergence and curl, their expansion formulae and				
IV	properties. Green's, Stoke's & Gauss's Divergence theorem: Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem				
Sessiona	I Internal Assessment (A Internal B Over	SIA) Full Marks 25 Ial written Examinati All Performance inclu	Marks on 20 Marks (1 Hr) uding Regularity . 05 Marks		
1	Recommended: Advanced Engineering M Vector Analysis: Lalji	lathematics (10th editic Prasad, Paramount	n). Erwin Kreyszig, Wiley		

Program: Bachelor's Degree Class: UG	Year: Third	Semester: VI	
Subject: Mathematics		I I III. The comi	-
Course Code: MN-2C	Course Title: Probability Theory		

Course Learning Outcomes: This course will enable the students to:

- a) Use basic counting techniques (multiplication rule, combinations, permutations) to compute probability and odds.
- b) Compute conditional probabilities directly and using Bayes' theorem, and check for independence of events.
- c) Set up and work with discrete random variables. In particular, understand the Bernoulli, binomial, geometric and Poisson distributions.
- d) Work with continuous random variables. In particular, know the properties of uniform, normal and exponential distributions.

(Theory) Compulsory		
T' 2 House		Попис
Content		Hours
event, mutually exclusive events, addi- probability, independent events, multiplication Baye's theorem,	on theorem, Total probability,	15
Random Variables and Distribution Function Functions of Discrete Variables, Distribution Variables, Mathematical Expectations,	ns, Introduction, Distribution in Functions of Continuous	15
distribution, Normal & Negative binomial d	distribution,	15
Manager of location and dispersion, mor	ments, skewness and kurtosis.	15
la	Random experiment, Sample Space, Algebrevent, mutually exclusive events, add probability, independent events, multiplications are theorem. Random Variables and Distribution Function Functions of Discrete Variables, Distribution Variables, Mathematical Expectations, Binomial Distribution, Poisson's Distribution, Normal & Negative binomial of Frequency distribution, graphical and diagrams.	Random experiment, Sample Space, Algebra of events, Probability of an event, mutually exclusive events, addition theorem, Conditional probability, independent events, multiplication theorem, Total probability, Baye's theorem, Random Variables and Distribution Functions, Introduction, Distribution Functions of Discrete Variables, Distribution Functions of Continuous Variables, Mathematical Expectations,

- 1. Fundamental of Mathematical Statistics: Gupta & Kapoor
- 2. Probability and Statistics for Engineering and the Sciences: Jay L. Devore,

Program Honour Class: U	: Bachelor's Degree with s/Hons. with Research JG	Year: Fourth	Semester: VII	
Subject:	Mathematics			
Course (Code: MN-1D	Course Title: Re	al Analysis-II	
ourse Le	arning Outcomes: This course	will enable the stud	ents to:	
a) Ui	nderstand the concept of limit	& continuity of a fur	ction.	
b) U	nderstand the concept of diffe	rentiation and expan	sion of function with remainder.	
c) U	nderstand the definition and c	ondition for Riemanr	integrability.	
d) U	nderstand the generalized set	operations and relat	ion on sets.	
Credit:	4 (Theory)	Compulsory		
Full Ma		Time: 3 Hours		
Unit		Content		Hours
I	Limit and Continuity: Limit, Continuity, Discontinuities, uniform continuity, properties of functions continuous in closed intervals, Functions of bounded variation.			
11	Derivability, Relationship with continuity, Taylor's theorem, Maclaurin's theorem, remainder after n terms. Power series expansion of $(1+x)^n$, $sinx$, $cosx$ and $log(1+x)$ using suitable remainder after n			20 h
ш	Riemann Integration Definition, Darboux's theorem 1 & II. Integrability condition, particular classes of bounded integrable function primitive, fundamental theorem, first and second Mean value theorem.			
Sessiona	A Internal Assessment (SIA) A Internal w B Over All P	witten k vamination	rks - 20 Marks (1 Hr) ng Regularity - 05 Marks	
Books	Recommended:			
	 Real Analysis by Lalji 			
	2. Real Analysis by K. K	Jha		
	3. Principle of Real Analy	voice S C Malik		

	n: Bachelor's Degree with rs/Hons. with Research UG	Year: Fourth	Semester: VIII	
Subject	: Mathematics			
Course	Code: MN-2D	Course Title: Op	perations Research	
	earning Outcomes: This course	will enable the stud	ents to:	
a) s	olve problems related to linear	programming proble	ems.	
b) s	olve problems related to transp	ortation & assignme	nt problems.	
c) S	olve real life problems using rep	placement model and	d sequencing.	
Cradit	4 (Theory)			
	4 (Theory) arks: 75	Compulsory Time: 3 Hours		
Unit	arks. 75	Content		***
I	Convex sets in R2 and their properties, L.P.P., problem formulation, Graphical Method. Simplex method including Big M-method,		Hours 15	
II	Duality: Definition of the dual problem, Primal-dual relationships, Dual simplex Method.			15
III	Transportation and Assignment problems			15
IV	Deterministic replacemer machines and n jobs.	nt models, seque	encing problems on two	15
Sessiona	l Internal Assessment (SIA) F A . Internal wri B . Over All Per	tten Examination		
1. I 2. I 3. 0	Recommended: Linear Programming Problem Linear Programming Problem Operations Research: Kanti S Operations Research: S. D. Sl	: R.K. Gupta : Lalji Prasad waroop		

Dr. P. C. Banenee

Mr Mahandra Kumar Rana

KOLHAN UNIVERSITY CHAIBASA, JHARKHAND UNIVERSITY DEPARTMENT OF HINDI

FOUR YEAR UG PROGRAMME (FYUGP)

HINDI SYLLABUS OF SEMESTER – I

(As Per Revised Guidelines of NEP 2020)

To Be Effective From: Academic Session 2022-26

University Department of Hindi, Kolhan University, Chaibasa

Course of Study for four year undergraduate programme (FYUGP) under state university of Jharkhand.

As per regulations of NEP 2020 in the State of Jharkhand, the revised four year undergraduate programme (FYUGP) course syllabus and credit frame work in Hindi been prepared the following members of Board of studies (BOS) of University Department of Hindi, held on 05-04-2023

1) Santosh Kumar

(Head, University Department of Hindi) Kolhan University, Chaibasa

(Chairman)

2) Dr. Sriniwash Kumar

Principal Department of Hindi J.L.N. College Chakradharpur

(Subject Expert)

3) Dr. Kishor Sahu

HOD, Department of Hindi Tata College, Chaibasa (Member)

4) Dr. Suchita Barda

HOD Deepartment of Hidni Mahila College Chaibasa

5) Dr. Suprabha Tuti

HOD, Department of Hindi Kashi Sahu College Saraikela (Member)

PROVISIONAL SYLLABUS OF SEMESTER I UNDER FYUGP AS PER REVISED GUIDELINES OF NEP 2020 FOR ACADEMIC SESSION 2022-26

Semester 1

AEC-I	2 Credits
हिन्दी व्याकरण एवं अनुवाद	

पाठ्यक्रम के इस भाग के अधिगम परिणाम निम्वत होंगे-

15 Lec. Hours

विद्यार्थीगण हिन्दी व्याकरण एवं हिन्दी अनुवाद से परिचित होंगे
 इकाई — 1 क. हिन्दी व्याकरण एवं रचना — संज्ञा, सर्वनाम, विशेषण, क्रिया
 ख. उपसर्ग, प्रत्यय, संधि, समास

इकाई — 2 प्रमुख प्रशासनिक / पारिभाषिक शब्द एवं उनके अनुवाद (हिन्दी से अंग्रेजी व अंग्रेजी से हिन्दी) वाक्य शुद्धि, पत्र लेखन, अवेदन, निबंध लेखन

Semester-I/II/III -(MDC1/2/3)

Course Title: Introduction to Statistics

Max. Marks: 75

UNIT I

Introduction: Definition and scope of Statistics, concepts of statistical population and sample. Scales of measurement -nominal, ordinal, interval and ratio. Variables and attributes, Diagrammatical Representation of Data, Summarization of Data: Frequency Distribution and Graphical Presentation.

UNIT II

Measures of Central Tendency: mathematical and positional. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation, coefficient of variation, moments, measures of skewness and kurtosis.

UNIT III

Bi-variate data: Definition, scatter diagram, correlation, rank-correlation. Fitting of linear and quadratic regression using principle of least squares. Theory of attributes and consistency of data, independence and association of attributes, measures of association and contingency for 2x2 tables.

Suggested Reading:

- S. C. Gupta, V. K. Kapoor, 12th Edition, (2017), Fundamental of Mathematical Statistics, Sultan Chand & Sons.
- Miller, I. and Miller, M. (2006). John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia.
- Mood, A. M. Graybill, F. A. and Boes, D.C. (2011). Introduction to the Theory of Statistics, 3rd Edn., (Indian Edition), Tata McGraw-Hill Pub. Co. Ltd.

KOLHAN UNIVERSITY, CHAIBASA FYUGP SEMESTER -I UNDER NEP SEC-1 (SKILL ENHANCEMENT COURSE) DIGITAL EDUCATION

CREDITS: 03

Course Objectives:

This course is specially designed for better understanding of digital education in India. The course has been designed to introduce key concepts in digital education to the students to sharpen their understanding of importance and significance of digital education in India. The students need to develop a critical thinking about the development of India in the background of expanding digital networks and our constant dependence on them in our day-to-day life.

Learning Outcome

- Students will understand the meaning of digital education and its importance.
- They will be able to focus on different digital platform, its utility and its applications.
- The students will be exposed to different tools of digital education available in India.
- They will understand the importance of E-Learning in the changing context of Digital India.
- They will come to know about their responsibility as citizen in digital growth in India.

UNIT I: Introduction to Digital Education

5 Classes

Meaning & Evolution of Digital Systems. Role & Significance of Digital Technology, digital education vs traditional education, advantages and disadvantages of digital education.

UNIT II: Digital Education Tools

(10 Classes+ 5 Hands on Sessions)

Information & Communication Technology & Tools
Interactive tools- Microsoft Teams, Google Classroom, Linkedin
Creative Tools - Google Slides, Google Spreadsheets, Google form, Youtube)

UNIT III: Digital Education in India

(10 Classes + 5 Hands on Sessions)

Government initiatives for Digital education in India: SWAYAM, E-Pathshala, National digital library of India (NDL India), DigiLocker. Advantages & challenges in digital education in India.

UNIT IV: E- Governance

10 Classes)

Introduction of E-Governance in India, Types of E-Governance-G2C (Government to Citizen), G2E (Government to Employee), G2B (Government to Business), G2G (Government to Government), E – Governance in Jharkhand.

Suggested Readings:

- 1. E-Governance in India: Initiatives and issues by R.P.Sinha
- 2. Information & Communication Technology (ICT) in Education by Dr. Vanaja M,Dr. S Rajasekar, Dr. S. Arulsamy.
- 3. Digital India: Understanding Information, Communication and Social Change by Pradip N.

References:

- 1. www.slideshare.net
- 2. www.lisportal.com/en/lis-blog

KOLHAN UNIVERSITY, CHAIBASA

Syllabus for FYUGP, NEP-2020 UG – Environmental Studies (2022 onwards)

Designed by

Dr. Basant Shubhankar Assistant Professor Univ. Dept. of Chemistry KU, Chaibasa Dr. Shovit Ranjan Assistant Professor Univ. Dept. of Zoology KU, Chaibasa Dr. Nitish Kumar Mahato Assistant Professor Univ. Dept. of Zoology KU, Chaibasa

EXAMINATION FRAMEWORK FOR VAC-1

Paper Type	Credits	Full Marks	Pass Marks	End Semester Examination
VAC(Theory)	2	50	20	50

END SEMESTER UNIVERSITY EXAMINATION (ESE):

• For End Semester Examination (ESE 50 marks, 2Hrs Exam), there will be two group of questions. Question No.1 will be very short answer type compulsory question in Group A consisting of five questions of 1 mark each. Group B will contain descriptive type five questions of fifteen marks each, Out of which any three are to answer.

Semester-I

Course Title: Environmental Studies (VAC-1) THEORY (02 Credits)

Unit	Content of Environment Studies	30 Hours		
Unit 1	Introduction to Environmental Studies	1 Hour		
	Components of environment: atmosphere, hydrosphere, lithosphere, and			
	biosphere; Scope and importance; Concept of sustainability and			
	sustainable development.			
Unit 2	Ecosystems	5 Hours		
	Definition and concept of Ecosystem. Structure of ecosystem (biotic and abiotic components); Functions of Ecosystem: Physical (energy flow), Biological (food chains, food web, ecological succession), and Biogeochemical (nutrient cycling) processes. Concepts of productivity, ecological pyramids and homeostasis. Types of Ecosystems.			
Unit 3	Natural Resources	5 Hours		
	Land resources; Soil erosion and desertification; Impacts of mining and dam building on environment; Water resources: Natural and man-made sources; Uses of water; Over exploitation of surface and ground water resources; Floods, droughts, and international & interstate conflicts over water; Energy resources: Renewable and non-renewable energy sources; Use of alternate energy sources.			
Unit 4	Biodiversity and Conservation			
	Definition of Biodiversity; Levels of biological diversity; Biodiversity hotspots; Endemic and endangered species of India; IUCN Red list criteria and categories; Threats to biodiversity; Biodiversity conservation strategies: in-situ and ex-situ methods of conservation; National Parks, Wildlife Sanctuaries, and Biosphere reserves; Biological Indicator species.			
Unit 5	Environmental Pollution	4 Hours		
	Environmental pollution: causes, effects, and controls; Pollutants and it's types; Nuclear hazards and human health risks; Solid waste management.			
Unit 6	Global Environmental Issues and Policies	5 Hours		
	Climate change, Global warming, Ozone layer depletion, and Acid rain; International agreements and programs related to climate and environmental issues; Sustainable Development Goals; Environment legislation in India: Wildlife Protection Act, 1972; Water (Prevention and Control of Pollution) Act, 1974; Forest (Conservation) Act 1980; Air (Prevention & Control of Pollution) Act, 1981; Environment Protection Act, 1986; Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006.			
Unit 7	Environment and Ecology (with reference to Jharkhand state)	5 Hours		
	Geographical feature: Soil, Climate, River, lakes, flora & fauna,			

National parks & Wildlife Sanctuaries, Polices & Programmes related to conservation of forest in context to Jharkhand.

Industry in Jharkhand and its impact on Environment: large scale Industry (Iron & Steel, Mining & Mineral Extraction, Chemical & Explosive, Cement, Agro based and Automotive) and small-scale Industry (Handloom sector, Tassar & Lac industry, Sericulture, Stone industry).

Mineral profile & Tourist Spots of Jharkhand (Hill Station, Waterfalls, Water spots, Religious Tourist Place, Cultural & Ethnic Tourist spots.

Suggested Readings:

- Gadgil, M., & Guha, R. 1993. This Fissured Land: An Ecological History of India. Univ. of California Press.
- Rao, M.N. & Datta, A.K. 1987. Waste Water Treatment. Oxford and IBH Publishing Co. Pvt. Ltd.
- Raven, P.H., Hassenzahl, D.M. & Berg, L.R. 2012. Environment. 8th edition. John Wiley & Sons.
- Sengupta, R. 2003. Ecology and economics: An approach to sustainable development. OUP.
- Singh, J.S., Singh, S.P. and Gupta, S.R. 2014. Ecology, Environmental Science and Conservation. S. Chand Publishing, New Delhi.
- Sodhi, N.S., Gibson, L. & Raven, P.H. (eds). 2013. Conservation Biology: Voices from the Tropics. John Wiley & Sons.
- Thapar, V. 1998. Land of the Tiger: A Natural History of the Indian Subcontinent.
- Warren, C. E. 1971. Biology and Water Pollution Control. WB Saunders.

Kolhan University, Chaibasa

Four Year Undergraduate Programme (FYUGP)

Common Courses, Code: VAC-1, Credits: 2, Sem-I

Value Added Course-1

Understanding India

UNIT I: Introducing India (2 lectures)

- I. The Land of India: landscape, mountains and rivers
- II. The People of India: demography and languages
- III. The Name of our Country: Jambudvipa, Sindhu (Indus), Inde, Hind, Hindustan, Bharat India

UNIT II: The Heritage of India: Unity in Diversity (10 lectures)

- I. Architecture and Sculpture: Indus Valley town planning, rock cut architecture, major styles of temples, Mughal architecture, modern and contemporary architecture, stone and metal sculpture
- II. **Painting:** Ajanta murals, Mughal paintings, Madhubani paintings, paintings of Jharkhand (Kohbar, Sohrai, Jadopatia, etc.).
- III. **Music and Dance:** Overview of various forms of music and dances in India; Chau dance of Jharkhand and Odisha
- IV. **Science, Technology and Medicine**: A general survey of the progress of science, technology and medicine in ancient India

UNIT III: The Knowledge System of India (4 lectures)

- I. Traditional Knowledge System: Gurukuls, Pathsalas, Tols, Maktabs, Madrasas
- II. Beginnings of Modern Education: Main features of British Government's educational policies
- III. Growth of higher and technical education in India

UNIT IV: The Indian Economy (4 lectures)

I. Features of the Indian economy from past to present (agriculture, industry and trade)

UNIT V: The Making of Contemporary India (10 lectures)

- I. The struggle for Independence (1885-1947)
- II. Framing of the Indian Constitution; Fundamental Rights and Duties
- III. India's Foreign Policy: Main Elements (Non Alignement, Panchsheel)
- IV. Panchayati Raj in India with special reference to PESA in Jharkhand

Suggested Readings

NCERT, classes 6-12 books on History, Political Science, Economics, Geography etc.

- A. L. Basham, A Cultural History of India, Oxford University Press, 1997
- A.L. Basham, A Wonder that was India, Rupa, New Delhi, 1994
- B.C. Deva, Indian Music, ICCR, 1976
- Braj, B. Kachru, et.al., Languages in South Asia, Cambridge University Press, 2013
- Hemant, Jharkhand, Prakashan Sansthan, New Delhi, 2008
- Herman Kulke and Deitmar Rothermund, A History of India, Taylor and Francis, 2016
- Krishna Chaitanya, A Profile of Indian Culture, The Indian Book Company, New Delhi, 1976
- N.R. Ray, An Approach to Indian Art, Publication Bureau, Chandigarh, 1974
- R.S. Sharma, India's Ancient Past, Oxford University Press, 2020
- R.C. Majumdar (ed.), *History and Culture of Indian People* (Relevant Volumes and Chapters), Bhartiya Vidya Bhawan, Bombay.
- S.C. Ghosh, History of Education in Modern India, 1758-1986, Orient Longman, Hyderabad, 1995

Romila Thapar, The Prnguin History of Early India: From the Origins to AD 1300, Penguin India, 2003

Tirthankar Ray, The Economic History of India 1857-1947, OUP, 2006

Vijay Joshi and I.M.D. Little, India's Economic Reforms, 1991-2001, OUP, 1996